

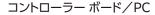
自己位置推定システム

with Vision-based Navigation Software

ガイドレス AGV/AMR 向け Visual SLAM ソリューション

スマート社会の実現に向けた取り組みとして、AGV (Automatic Guided Vehicle=無人搬送車)やAMR (Autonomous Mobile Robot=自律移動ロボット)、ドローン、人や物体などを認識して駆動するサービスロボットなどを活用した工場や物流、商業施設などでの自動化や無人化が進められています。

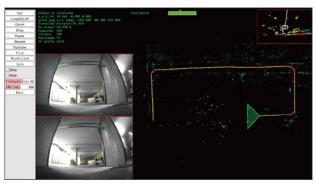
「自己位置推定システム with Vision-based Navigation Software」は、位置姿勢計測や地図作成機能をもつ高精度なソフトウェアと、HMS社が提供するステレオカメラを組み合わせて提供する、サービスロボット向けソリューションです。プログラム開発支援やステレオカメラを用いた試験実施をサポートいたします。


ステレオ画像取得

HMS社ステレオカメラ

位置姿勢計測/地図作成

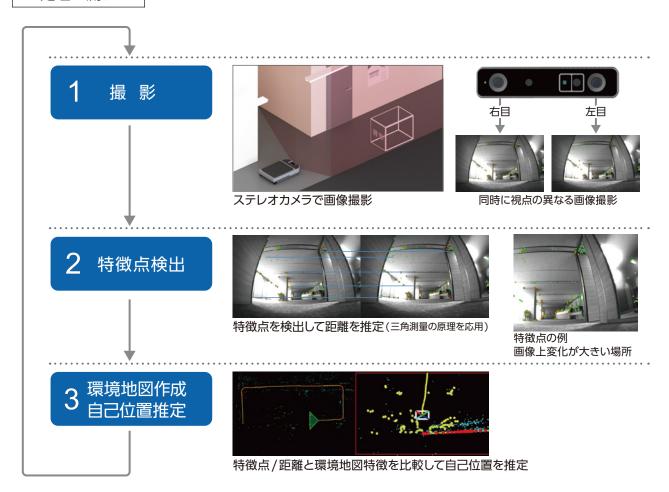
Vision-based Navigation Software



AGV/AMR に搭載

走行中の AGV からの RGB カラーイメージ

走行中AGVの「自己位置推定システム with VNS*」 ビューワー画面


高い基本性能をもつ「Visual SLAM」技術

Visual SLAM (Visual Simultaneous Localization and Mapping)技術は、カメラ映像を用いた周辺特徴の抽出により、自己位置推定と環境地図作成を同時に行う技術です。

「移動ロボットの眼」となり、幅広い画角で撮影されたカメラ映像データを用いて、周囲の環境の3次元情報とカメラの位置姿勢を同時に推定するため、レイアウト変化の多い現場でも柔軟に対応することができます。

Vision-based Navigation Software で提供されるVisual SLAM技術は、立ち上げ時の高速な位置姿勢計測はもちろん、 暗所や逆光にも強く、場所移動による急な照明の変動や、外光環境にも、高い順応性を持つよう設計されています。

処理の流れ

SLAM技術は、周囲の情報(3次元情報)を取得するセンシング技術の違いで、大きく2つあります。

▶ LiDAR SLAM技術: LiDAR (Light Detection and Ranging) というレーザーセンサー (距離センサー)を用いる

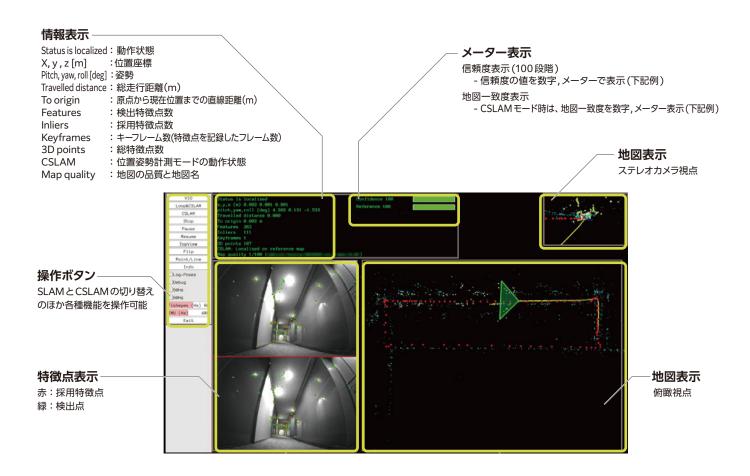
▶ Visual SLAM技術 : カメラ・イメージセンサーから取得した画像データを用いる

障害物への対応や周囲環境の識別などに課題があるLiDAR SLAM技術と違い、キヤノンが採用したVisual SLAM技術は、映像情報をもとに自己位置推定を行うため、周囲の障害物や人の識別、コンセントや充電箇所などランドマーク(特徴物)の認識など、自己位置推定以外のさまざまな制御に活用できます。

「Vision-based Navigation Software」の特長

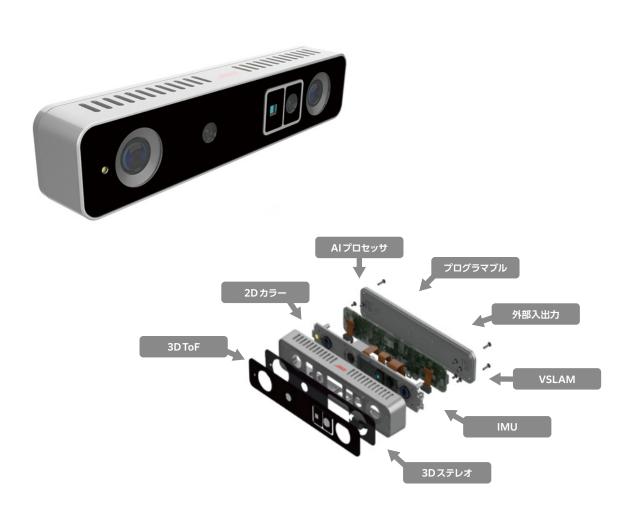
1. 位置姿勢計測

- ■特徴点が少なく検出が難しい環境においても、高精度の計測が可能
- 照明変動や外光環境への順応に優れている(暗所や逆光に強い)
- レイアウトや風景変更が多い現場でも、対応可能
- 初期位置出力が早く(起動してすぐに使用開始可能)、地図のスムースな切替が可能

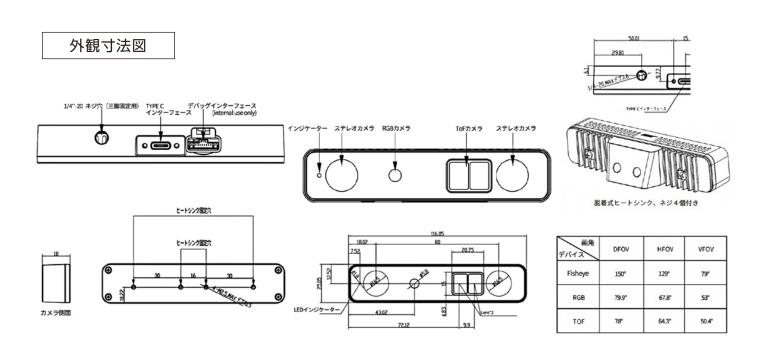

可能 地図共有

2. 豊富な機能

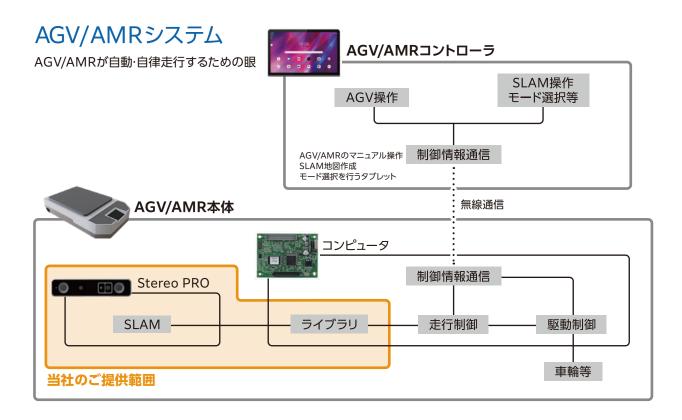
- カメラ間で地図共有ができる機能搭載
- 周辺環境の変化による認識精度への影響を極力少なく抑えられる
- 検出した特徴点や作成した地図の出力などUIが充実している
- 大規模な工場や倉庫に対応


3. 環境確認/課題対応に必要な機能を搭載したビューワー

■ カメラとノート PC による位置姿勢計測の閲覧が可能 (特徴点分布や地図形状、信頼度を閲覧可能)

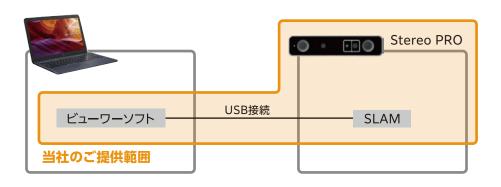

スマートカメラ「SiNGRAY Stereo PRO」の特長

SiNGRAY Stereo PROは、2DカラーセンサとToFセンサに加え3Dステレオセンサを搭載した、ハイエンドAIスマートカメラです。高速なAIプロセッサおよび、IMUプロセッサ(9軸ジャイロ)を搭載し、ステレオ映像、カラー映像、3Dデプス映像を同時に撮像し、物体認識、ジェスチャー認識などAI画像認識や自己位置推定をリアルタイムに処理できます。 コンパクトな一体型構成で、撮像画像はジェスチャーやランドマーク認識などロボット制御に付加できるため、無人搬送車(AGV)やドローンなど移動ロボットの自由走行や自律走行を可能にする「眼」としてご活用いただけます。



製品仕様

ToF解像度(HxV)	640x480 最大30fps / 320x240 最大30fps	
ToFセンサFOV	78°(D) × 64°(H) × 50°(V)	
ToFセンサ奥行 計測範囲	0.05~5.0メートル、屋内屋外対応	
VCSEL波長	940nm	
ToFセンサ奥行計測精度	≤1%	
RGB解像度(HxV)	1920x1080 最大30fps / 1280x720 最大30fps / 640x480 最大30fps	
RGBセンサFOV	79.9°(D) × 68°(H) × 53°(V)	
ステレオセンサ解像度	1280×800 最大50fps / 640×400 最大60fps	
ステレオセンサベースライン長	80mm	
ステレオセンサFOV	150°(D) ×130°(H) ×74°(V)	
ステレオセンサ奥行計測範囲	0.5~8.0メートル	
ステレオセンサ奥行計測精度	≤3%(0.5~3.0メートル)、≤10%(3.0~8.0メートル)	
IMU	9軸 1000Hz	
VSLAM機能	VIO、SLAM、CSLAM、マッピング、平面検出	
エッジAI機能	物体認識、顔認識、ジェスチャ認識、バーコード/QRコード認識など	
外形寸法·重量	116mmx25mmx18mm·127g(本体のみ、ヒートシンクなし)	
データ出力	USB Type-C コネクタ	
	USB Type-C コネクタ経由5V 3A	
消費電力	15W以下	
動作温度	0 ~ +60℃	



システム構成例

ビューワーシステム

AGV/AMRの搭載検討や導入環境確認のためのツール

[※]双方システムのSLAM部分は同一です

[%]ToFやAlについては、現時点のVision-based Navigation Softwareではサポートされておりません

SDK仕様/動作環境

	項目	条件
動作モード	地図作成	特徴点獲得後、ループクローズ処理して作成
	位置姿勢推定	0
位置計測	位置姿勢出力	6DoF
	信頼度出力	100段階
	カメラフレームレート	50/60/100 fps
	コース長	特徴点数/メモリサイズに依存
地図	地図データ入出力/共有	地図データのファイル入出力可能
	地図形状出力	ループクローズ後に画像ファイルを出力 (サイズVGA程度)
	保存可能数	ストレージサイズに依存
その他	特徴点画像出力	特徴点を描画した画像を出力 5fps
	停止時位置変動抑止	停止時に風景移動による位置変動を抑止
動作環境	СРИ	Intel Atom x7-E3950E以上
	メモリ	4GB以上
	ストレージ	64GB以上
	OS	Ubuntu 20.04 LTS 64bit
	カメラ	SiNGRAY A-Exlam80 / SiNGRAY StereoPRO

ビューワー仕様/動作環境 (ビューワーが動作するPCのスペック)

大項目	項目	条件
仕様	動作モード	地図作成 / 位置姿勢推定 / ループクローズ
	状態情報	認識状態、信頼度、6DOF
	特徴点画像	ステレオカメラ画像に特徴点を描画
	地図	自己位置、地図 (3次元表示、マウス操作可能)
	ログ出力	6DOFをファイルに出力
環境	OS	Ubuntu 20.04 LTS
	CPU	Intel Core i5 8th以上
	メモリ	8GB以上
	ストレージ	64GB以上
	モニターサイズ	1920x1080以上
	USB	USB3.0

活用例

VSLAM ソリューション:現場の移動巡視の自動化、サービスロボット制御

製品情報 Web サイト

画像処理ソリューション https://www.canon-its.co.jp/solution/image/

お気軽にお問い合わせください

https://reg.canon-its.co.jp/public/application/add/473

℃a11011 キヤノン IT ソリューションズ株式会社

東 京: 〒140-8526 東京都品川区東品川2-4-11 大 阪: 〒550-0001 大阪市西区土佐堀2-2-4

- © Canon IT Solutions Inc. All rights reserved.
 ・Windows は、米国 Microsoft Corporationの米国、日本およびその他の国における登録商標です。
 ・その他の製品および社名は、各社の登録商標または商標です。

- ・記載のコンテンツを無断で転載することを禁止します。・情報は制作時点のものであり、予告なしに変更することがございます。

お求めは信用のある当社で

2024年6月現在